Design of Photonic Crystal Wave Guide for Light Confinement in Carbon Nanotube based Infrared Sensors

Jianyong Lou^{1,3}, Ning Xi¹, Carmen Kar Man Fung¹, Zhengfang Zhou², King Wai Chiu Lai¹

The Robotics & Automation Laboratory, Michigan State University, USA
 Department of Mathematics, Michigan State University, USA
 School of Electrical Engineering, Xi'an Jiaotong University, China

Content

Background of IR Detector
Principle of IR Detector and Photonic Crystal
Design for Photonic Crystal
Inverse Problems
Band Diagram
Conclusion

Background of IR Detector

- Electromagnetic waves with wavelength longer than visible light and shorter than microwaves (~ 750 nm to 1mm)
- Shorter wavelengths for telecommunication
- Longer wavelengths are 'thermal'
- 8 14 μm is useful range for 'thermal imaging'
- Sensing $3 5 \mu m$ is difficult

Application of IR Detector - Infrared Camera

Working principle

- Photodiodes convert optical signal (light) to electrical signal (current/voltage)
- Cut off wavelength depends on the bandgap energy of the material

Photonic Crystal Wave Guide for Light Confinement

- Light control and confinement with photonic crystal
- Line defect and point defect

Photonic crystal cavity:
2D periodic structure to
totally localize the incoming
radiation in the cavity

Light confinement (point defect with air hole in dielectric substrate)

Inverse Problems

• The forward problem

- Finding the maximum output electric field *E* and resonant frequency *ω* as a function of radius *r*, periodic distance *a*, dielectric constant *ε*
- The inverse problem
 Find *r*, *a* and specific frequency
 \varnotheta from the band diagram

Basic Theory

- Electromagnetic principle
 - ♦ Maxwell equations

$$\nabla \Box H(r,t) = 0, \qquad \nabla \times E(r,t) + \mu_0 \frac{\partial H(r,t)}{\partial t} = 0$$

$$\nabla \Box [\varepsilon(r)E(r,t)] = 0, \qquad \nabla \times H(r,t) - \varepsilon_0 \varepsilon(r) \frac{\partial E(r,t)}{\partial t} = 0$$

$$H(r,t) = H(r)e^{-i\omega t}$$

 $\partial H(r, t)$

$$E(r,t) = E(r)e^{-i\omega t}$$

- Schrödinger's equation
 - ◆ Hamiltonian of a system of electrons

$$H = \frac{1}{2m_e} \left(\hat{\mathbf{P}} + \frac{e}{c}\mathbf{A}\right)^2 + V(r)$$

Master equation

$$\nabla \times \left(\frac{1}{\varepsilon(r)} \nabla \times H(r)\right) = \left(\frac{\omega}{c}\right)^2 H(r)$$
$$E(r) = \frac{i}{\omega \varepsilon_0 \varepsilon(r)} \nabla \times H(r)$$

 Quantum conductivity and dielectric function

$$\sigma(\omega) = -j \frac{e^2 E_F}{\pi \hbar^2 (\omega - j\upsilon)}$$

$$\varepsilon(\omega) = 1 + i4\pi\sigma(\omega)/\omega$$

Band Diagram for Photonic Crystal

- Light confinement with point defect
- Air hole in dielectric substrate
- Point defect in the center
- Incident light frequency:
 - mid-frequency of band gap
- Electric field intensity: confine at defect position

Robotics and Automation Laboratory, Michigan State University

0000

0000

5

Conclusion

- Infrared sensors enable many potential applications
- Single CNT is a promising material for non-cryogenic cooled IR sensors
- Photonic crystal cavity to confine and enhance the electric field at the sensor
- Band diagram for different photonic crystal structures
- Find the optimized design based on the band diagram

